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Application of Volume Balances and the Differential 
Diffusion Equation to Filtration 

HARRY V. NORDEN and PETTERI KAUPPINEN 
DEPARTMENT OF CHEMICAL ENGINEERING 
HELSINKI UNIVERSITY OF TECHNOLOGY 
KEMISTINTIE 1 M. 02150 ESPOO. FINLAND 

ABSTRACT 

A mathematical model describing the formation of filter cakes in filtration is 
presented. Filtration equations are derived from volume balances and Darcy's 
equation, and they are presented in the same form as partial differential diffusion 
equations. The general form of the model is applicable to three-dimensional forma- 
tion of a filter cake. Both compressible and incompressible cakes are considered. 
A calculated example for incompressible cake filtration is presented. 

INTRODUCTION 

In cake filtration, solids are separated from liquid with a filter medium. 
Liquid flows through the medium while solid particles are retained on the 
surface of the medium, forming a cake. A cake is termed incompressible 
when the porosity, i.e., void fraction of cake, and specific cake resistance 
are constant throughout the cake (1) .  In a compressible cake, porosity 
usually decreases toward the filter medium. 

Many studies on the mathematical modeling of compressible cake filtra- 
tion have been presented, e.g., Chase and Willis (2), Stamatakis and Chi 
Tien (3), Tiller et al. (4), Wakeman (9, Smiles (6), and Shirato et al. (7). 
The filtration of compressible fiber suspensions has also been studied with 
the same basic principles, e.g., Ingmanson (81, Kovasin et al. (9), and 
NordCn et al. (10). 

Recently Stamatakis and Chi Tien (3) derived equations describing the 
formation and growth of filter cakes. Their equations are based on the 
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1320 NORDEN AND KAUPPINEN 

general discussion on filtration presented by Tiller et al. (4). Stamatakis 
and Chi Tien (3) also presented a method for the numerical solution of 
these equations. Only one-dimensional filtration cases are considered in 
the study, and the compressible cake is assumed to be finite. 

Smiles (6, 11) proposed an approach to filtration where the filtration 
equations are presented in the form of differential diffusion equations. 
This approach is applicable to one-dimensional cases. Smiles employs a 
material coordinate based on the distribution of the solid in his approach, 
and he uses the moisture ratio, i.e., the specific volume of water per 
specific volume of solid, as the dependent variable. However, as pointed 
out by Wakeman ( 5 )  and Tosun (12), the approach is conceptually difficult 
and ignores accepted filtration terminology. 

In this study on cake filtration, equations of continuity are based on 
volume coordinates, and volume average velocity is used as average ve- 
locity. The pressure loss of liquid in cake is described by Darcy’s law, and 
liquid flow is assumed to be laminar. A force balance is used to correlate 
compressive pressure with hydraulic pressure, and the consistency of sol- 
ids is related to compressive pressure with a constitutive function. These 
equations are combined, and an equation for cake filtration is presented. 
This equation has the same form as the partial differential equation in 
diffusion with a nonconstant volumetric diffusivity. The equations are 
presented in three-dimensional form. 

VOLUME BALANCES 

In the literature, no systematic approach to volume balances has been 
found apart from NordCn (13), although in some studies volume balances 
have been used in some simple form, i.e., Renault and Wallender (14), 
Core and Mulligan (15), and Rohani and Baldyga (16). 

Volume balances may be derived from the corresponding mass balances 
(13). The differential component and total mass balances are, respectively, 

Dcj ri = - + c i V - w  + V.jj Dt 
I 

DP r = - + p v * w  + C V.jj 
Dt i =  1 

where 

~a 
Dt at 
_ -  - - + w - v  

The velocity w can be mass, molar, or volume-average velocity. 
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APPLICATION OF VOLUME BALANCES TO FILTRATION 1321 

The substitutions of Vlen, pv = 1, cis;, and j,Vi for r ,  ri, p, Ci, 
and j, respectively, gives the differential component and total volume 
balances ( 1 3). 

D(~ji7;) 
V:,'gen = ___ + (c;V;)V*w + V.(j;V;) Dt (3) 

In this study, equations describing the three-dimensional two-phase flow 
of slurry in filtration are derived from the preceding volume balances. 

The total volume balance takes the form 

Plen = V . W  + v.uf7f + jszs) ( 5 )  

The solids volume balance is 

And a similar balance for filtrate or liquid is 

With the following assumptions: 

no reactions or dissolving of solids occur. 
partial specific volumes 7, and Vf are constant. 

Equations (6) and (7) reduce to the corresponding mass balances. 

mass balances that 
As there is no generation of mass in the system, it is seen from the 

(8) p V I I I  

pie" = p s,gen + VTgen = 0 

s,gen = 0, f,gen = 0 
and 

(9) 

Assuming the velocity w to be the volume-average velocity, there fol- 

(10) 

lows for a binary system 

jfZf + j,V, = 0 

and the substitutions of Eqs. (10) and (9) into Eq. (5 )  gives 

v * w  = 0 (1  1) 
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1322 NORDEN AND KAUPPINEN 

As the partial specific volumes 5 are assumed to be constant, they can 
be replaced by the corresponding specific volumes ui. 

SUPERFICIAL VELOCITIES 

Superficial velocities of slurry, solids, and liquid are defined as follows. 
For the slurry, the superficial velocity is the same as the volume-average 
velocity. 

w = w = w, + Wf (12) 
Superficial velocities of solids and liquid are defined with a convective 

flux term and a “diffusional flux” term, in the same way as total fluxes 
are defined in diffusion. Hence, for solids one has 

(13) 
where W, is the superfkial velocity of solids relative to stationary coordi- 
nates, and jsu, is the “diffusional velocity” of solids relative to volume 
average velocity w. 

W, = (cu,)w + jsvs 

One has, thus, for the liquid 

Wf = (cfuf)w + jfvf (14) 

VELOCITIES 

The true velocities are given by the following equations. For the slurry, 
one has 

w = w  (15) 

For the solids, the velocity is 

u = w,/cu, 

and for the liquid, the velocity in the interstices of the solids is 

Uf = WfICfV, (17) 

Wallis (17) has also presented the different velocities in two-phase flow 
using volume-average velocity and a relative velocity. 

DARCY’S EQUATION FOR LAMINAR FLOW 

The well-known Darcy equation for laminar flow can be written as 
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APPLICATION OF VOLUME BALANCES TO FILTRATION 1323 

The pressure loss gradient Vpf,f is opposite in sign to the liquid pressure 
gradient Vpf for horizontal flow. The pressure loss gradient Vpfef should 
be used in Eq. (18) and not the liquid pressure gradient Vpf, which is used 
by Stamatakis and Chi Tien (3) and Tiller et al. (4). 

The permeability K is not constant for a compressible bed, but varies 
throughout the cake. It is usually presented as a function of consistency 
of solids c or compressible pressure p , .  

With Eqs. (16) and (17), Darcy’s equation takes the form 

Wf + Ws W, Ws I K 
CfVf CfUf CUS CfUf q VPf.f (19) 

Using Eq. (12) in Eq. (19), one has 

And with Eq. (16) we obtain Darcy’s equation in the form 

K 
rl 

w - u = - VPf,f 

Now the “diffusional mass flux” of solids can be expressed with Eqs. 
(13), (16), and (21): 

(22) 

In the above discussion inertial forces are neglected and gravitational 
forces are partly taken into account. Only the friction between particles 
and liquid is considered. The internal forces in the liquid due to viscosity 
are not considered, and wall friction is neglected. 

Kc 
j, = c(u - w) = -- Vpff  

“ r l ’  

CONSTITUTIVE EQUATION 

The structural properties of a filter cake can be represented alternatively 
with porosity E, solidosity E ~ ,  or consistency c. These variables can be 
related to each other. 

Constitutive equations are used to correlate the structural bed proper- 
ties with the compressive pressure acting on the solid particles. These 
equations are empirical, and different equations have been proposed. 

Tiller et al. (4) suggested the following constitutive equation which is 
often utilized in the mathematical modeling of filtration: 

Constants &‘, PA, and p in Eq. (23) are material specific. 
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1324 NORDEN AND KAUPPINEN 

According to Tiller et al. (4), this constitutive equation is generally valid 
for compressive pressures up to 5-10 atm. It is clearly seen from Eq. (23) 
that es tends to infinity as p s  + m. However, values of solidosity greater 
than unity have no physical meaning. 

In the filtration of pulp suspensions, consistency c usually describes 
the structure of fiber beds. Fiber consistency is normally defined as weight 
of dry fibers per unit volume of suspension. The volume fraction of liquid, 
porosity, can be calculated from the fiber specific volume and the fiber 
consistency: 

E = 1 - CUB (24) 

Qviller’s equation (18) is often used as a constitutive equation for fiber 
beds. In this equation, fiber consistency is correlated to compressive pres- 
sure with a power function. 

c = Mp? (25)  

In the following discussion, a general form of the constitutive equation 

ps = G ( c )  (26) 

is used 

PERMEABILITY 

There are several correlations for the calculation of permeability. One of 
the most frequently used is obtained from Darcy’s and Kozeny-Carman’s 
equations. 

(1 - c U s ) 3  

kS;( cus)* K =  

The Kozeny factor k in Eq. (27) depends on particle size, shape, and 
porosity. An average value of the Kozeny factor is 5 for roughly spherical 
particles in the porosity range between 0.3 and 0.5 (18). However, this 
average value is not applicable to beds formed of multisized particles. 

For cellulose fibers the value of the Kozeny factor k is 5.55 for porosities 
less than 0.80 (19). For fiber structures with higher porosities, both Davies 
(20) and Carrol (21) proposed a correlation for the variation of Kozeny 
factor with porosity. Davies’ correlation is applicable to porosities higher 
than 0.60 and Carrol’s correlation for the whole porosity range. Carrol’s 
correlation is of the form 

(28) k = 5.0 + e[14.0(cfw-0.80)1 
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APPLICATION OF VOLUME BALANCES TO FILTRATION 1325 

Tiller et al. (4) and Stamatakis and Chi Tien (3) correlated permeability 
to the compressive pressure in their studies with the following empirical 
equation: 

KO K =  

In Eq. (29), KO is the permeability at zero compressive stress. The con- 
stants K O ,  pA, and 6 are material specific. 

FORCE BALANCE 

In a stationary bed, the total pressure at some arbitrary point is assumed 
to be constituted of liquid pressure pf and compressive pressure on solids 
P s .  

(30) P = ps + Pf 

The pressure gradients are 

VP = vp, + Vpf = glu,, (31) 

VPf = glut (33) 
The solid particles are assumed to lie on each other in the bed, and thus 
they are not contributing to the liquid pressure due to height. 

Liquid flow is usually laminar in a nonstationary bed, and therefore 
inertial forces may be omitted. When wall friction is also neglected and 
particles are assumed to be in point contact with each other, only frictional 
forces between fluid and solid particles and gravitational forces need to 
be considered. 

Thus we obtain Eqs. (32) and (33) in the following form for flow in a 
nonstationary bed: 

vps = (; - ;) g + vp,,f (34) 

g 
Vf 

VPf = - - VPf,f (35) 
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1326 NORDEN AND KAUPPINEN 

As an approximation, the gradient of the total pressure in Eq. (31) is 
assumed to be the same in the nonstationary bed as in a stationary bed 
with the same distribution of solids. 

From the assumptions we obtain the relationship Vps,f = Vpf,f, and 
therefore the liquid pressure loss gradient Vpef is 

And when the last term in Eq. (36) is neglected, which is usually done in 
filtration, the force balance is 

VPf.f = VPS (37) 

DIFFUSION EQUATIONS 

The equation of the “diffusional mass flux” of solids Eq. (22) combined 
with the constitutive equation Eq. (26) and the force balance Eq. (37) 
gives 

j, = -D(c)Vc (38) 

where 

Equation (38) is exactly the same equation as we have for diffusion mass 
transfer with a nonconstant volumetric diffusivity [ D ( c )  = () m2/s]. In 
ordinary diffusion, this is called Fick’s law. 

The diffusivity of solids D ( c )  may also be expressed in the following 
form using Eq. (27) for permeability, Carrol’s correlation (Eq. 28) for the 
Kozeny factor, and Qviller’s correlation (Eq. 25) for compressive 
pressure: 

In Eq. (39), v ,  is the volume of wet fibers per unit weight of dry fibers 
and the consistency c is the weight of dry fibers per unit volume. 

Insertion of p;Igen = 0 and Eqs. (38) and ( 1  1) in Eq. (6) gives 

ac 
Dt at 
_ -  Dc - - + w*vc = V*[D(c)Vc] 

This is the usual partial differential equation for diffusion with no reactions 
and no generation of volume. 
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APPLICATION OF VOLUME BALANCES TO FILTRATION 1327 

If the solids contain liquid, which follows the solids, then Eqs. (31), 
(34), ( 3 9 ,  (37), (38), and (40) (but not Eq. 39) hold with the following 
definitions: 

E~ 
us 
c 
j, 
These equations also hold for es and vs  as above and 

c 
j, 

volume fraction of wet solids 
volume of wet solids per unit weight of wet solids 
consistency, i.e., weight of wet solids per unit volume 
mass flux of wet solids 

weight of dry solids per unit volume 
mass flux of dry solids 

INCOMPRESSIBLE FILTER CAKES 

The consistency c is often assumed to be constant in incompressible 
filter cakes, and then constitutive equations involving consistency cannot 
be used. Therefore, with incompressible cakes, we start with Eq. (21), 
the Darcy equation 

The boundary condition at the cake surface is obtained from the solids 
mass balance 

where wb and rb are boundary velocity and radius vector, respectively. 
In Eq. (42), uc is the velocity of particles in the cake at the cake surface 
and cC is the cake consistency. 

EXAMPLE 

Cake filtration with variable hydrostatic pressure and sedimentation of 
solid particles is presented as an example. The filter cake is taken as 
incompressible. The influence of sedimentation on the filtration of incom- 
pressible filter cakes has also been studied by Theliander (22), Vadja and 
Toros (23, 24), and Bockstal et al. (25). 

The filtration process in our example is presented schematically in Fig. 
1. Filtration starts with slurry of consistency CF, and the initial height of 
the slurry above the filter cloth is h,. A constant gauge pressure of magni- 
tude p g  is applied to the top of the slurry. Therefore, at the start of the 
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1328 NORDEN AND KAUPPINEN 

INITIAL INTERMEDIATE FINAL 

11 

filtrate filtrate 

FIG. 1 The filtration process. 

filtration the pressure difference across the filter cloth is the sum of the 
gauge pressure and the hydrostatic pressure of the slurry. 

At an intermediate time, the height of the cake is h and the combined 
height of the cake and the slurry is h,, . There is also a layer of clear liquid 
above the slurry, which is formed from the settling of the solid particles. 
The total height of solids and liquid above the filter cloth diminishes as 
the filtrate flows out of the filter chamber. The pressure drop across the 
cake and the filter cloth is the sum of the gauge pressure, the hydrostatic 
pressure of the slurry, and the hydrostatic pressure of the liquid. 

The filter medium resistance is assumed to be constant during the filtra- 
tion. The filtration process stops when all the solid particles are in the 
cake. This step is followed by the flow of the clear liquid through the 
cake, which is not included in these calculations. 

Solution 

The velocity of the particles in the cake is zero, as the cake in this 
example is incompressible. Therefore the solids mass balance for the one- 
dimensional system simplifies to 

(43) 
cF(w 't ust) - dh CFu 

dt cC - CF cc - CF 
-wb = - = - -  
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APPLICATION OF VOLUME BALANCES TO FILTRATION 1329 

where u is the velocity of the particle in the slurry, and ust is the hindered 
settling velocity of the particles, i.e., the velocity difference between the 
particles and the slurry. 

The velocity of the sedimenting particles relative to the slurry is calcu- 
lated in the same way as the hindered settling velocity is calculated in 
sedimentation. The solid particles are assumed to be spherical and of equal 
size. It is also assumed that the slurry concentration above the cake is 
constant. Thus, the settling velocity is constant. 

Khan and Richardson (26) present the following correlation for the cal- 
culation of the terminal velocity ut which applies to Re, < lo5 

In Eq. (44), Ga is the dimensionless Galileo number: 

d3PAPs - P f k  
T2 

Ga = (45) 

The hindered settling velocity ust is calculated from the terminal settling 

(46) 

The exponent n in Eq. (46) is calculated from the correlation presented 
by Khan and Richardson (27): 

velocity using the empirical equation 

U,t = u - w = ut(1 - CFVs)n  

4.8 - n 
n - 2.4 
-- - 0.043Ga0.57 (47) 

We use Darcy's equation to calculate the flow of filtrate: 

where the pressure drop of fluid from friction expressed with the hydro- 
static pressures is 

APf,f =.pg + Pslg(hsc - h)  + pfg(ht - hsc + h )  (49) 

The pressure drop in Eq. (49) may often be approximated with the 
equation 

APf,f Pg + PslSht (50) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
1
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1
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300 

E 
E 
2 200 
.- 0 

Q, 100 

L 

Q, 
L 
Y 

8 
0 

FILTRATION 
AND 

SEDIMENTATION 

-FILTRATION 

0 30 60 90 120 

time 1 s 
FIG. 2 Comparison between filtration and filtration with sedimentation. 

The thickness of the clear liquid above the slurry is a function of the 
hindered settling velocity and of time: 

The decrease of the total height in the filter chamber is proportional to 

dhtldt = - W  (52) 
This system of five equations (Eqs. 43, 48, 49, 51, and 52) is solved 

with the method of finite differences. The results are shown in Figs. 2 
and 3. In Fig. 2 we have compared the formation of the filter cake between 

the flow of filtrate: 

0 30 60 90 120 

time 1 s 

FIG. 3 Different heights in the filter chamber. 
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APPLICATION OF VOLUME BALANCES TO FILTRATION 1331 

cake filtration with sedimentation with filtration where the effects of sedi- 
mentation have been neglected, and in Fig. 3 the different heights in the 
filter chamber are shown as a function of time. The following data were 
used in the calculations: 

d = 150 pm 
cc = 1902 kg/m3 
CF = 634 kg/m3 
p g  = 5 kPa 
h, = 1 m (at t = 0 seconds) 
K = 9.88 x 
psl = 1434 kg/m3 
pf = 1000 kg/m3 
ps = 3170 kg/m3 
q = 1.005 mPa.s 
R ,  = 2 x 109m-' 

m2 (calculated from Eq. (27)) 

CONCLUSIONS 

Equations describing the formation of filter cakes in cake filtration have 
been developed in this study. The general equations are applicable to 
three-dimensional cases, and both compressible and incompressible cakes 
are considered. 

The filtration equations are derived to the same form as partial differen- 
tial equations are in diffusion. This facilitates the solution of the differen- 
tial equations as the mathematics of diffusion has been studied exten- 
sively. 

The calculation procedure for an incompressible cake is presented in 
an example. 

NOTATION 

C consistency of solids (kg/m3) 
cc cake consistency (kg/m3) 
Ci 
CF 
d diameter of particle (m) 

consistency of component i (kg/m3> 
initial and feed consistency (kg/m3) 

D ( c )  diffusivity of solids [ = 7 T] (m2/s) 

g 
Ga dimensionless Galileo number 
G ( c )  constitutive function (Pa) 

gravitation vector in downward direction (m/s2) 
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1332 NORDEN AND KAUPPINEN 

j,, j f  

h 
ht 
hsc 
k 
K 
KO 
M 
N 
n 
P 
Po 

P f  
P s  

P A  

P s  
VPf.f 
VPs.f 

diffusional mass flux of solids and liquid with respect to average 
flow velocity w [kg/(m*s)] 
cake thickness (m) 
total height of material in filter chamber (m) 
thickness of cake and slurry in filter chamber (m) 
Kozeny factor 
permeability (m2) 
permeability of unstressed bed ( p s  = 0) (m’) 
compressibility constant (Eq. 25) [(kg/m3)/PaN] 
compressibility constant (Eq. 25) 
empirical exponent in Eq. (47) 
total pressure (Pa) 
constant total reference level pressure ( h  = 0) (Pa) 
empirical constant (Pa) 
liquid pressure (Pa) 
solids compressive pressure (Pa) 
gauge pressure (Pa) 
liquid pressure loss gradient (Pdm) 
gradient of compressive solids stress due to friction (Pa/m) 
pressure loss in liquid over cake and filter cloth (Pa) 
rate of generation of mass per unit volume [kg/(m3s)J 
radius vector (m) 
boundary radius vector (m) 
filter medium resistance (m-’) 
particle Reynolds number 
specific surface (m2/m3) 
time (seconds) 
velocity of solids (m/s) 
velocity of solids in cake (m/s) 
velocity of liquid (m/s) 
hindered settling velocity of particles (m/s) 
terminal settling velocity of particles (m/s) 
volume generation in total volume balance [m3/(m3 s)] 
volume generation in solids volume balance [m’/(m’s)] 
volume generation in liquid volume balance [m3/(m3 s)] 
specific volume (m’/kg) 
specific volume of solids and liquid (rn3/kg) 
partial volume of solids and liquid (m3/kg) 
average (usually volume) velocity (m/s) 
boundary velocity at cake and slurry interface (m/s) 
superficial velocity of slurry (m/s) 
superficial velocity of solids (m/s) 
superficial velocity of liquid (m/s) 
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APPLICATION OF VOLUME BALANCES TO FILTRATION 1333 

Greek Letters 

P compressibility coefficient 
6 compressibility coefficient 
E porosity 
ES solidosity 
d! 
rl 
P mass density (kg/m3> 

solidosity of unstressed bed ( p s  = 0) 
dynamic viscosity of liquid (Ns/m2) 

Subscripts 

C cake 
f liquid 
I component i 
S solid 
sl slurry 
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