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Application of Volume Balances and the Differential
Diffusion Equation to Filtration

HARRY V. NORDEN and PETTERI KAUPPINEN

DEPARTMENT OF CHEMICAL ENGINEERING
HELSINKI UNIVERSITY OF TECHNOLOGY
KEMISTINTIE 1 M., 02150 ESPOO. FINLAND

ABSTRACT

A mathematical model describing the formation of filter cakes in filtration is
presented. Filtration equations are derived from volume balances and Darcy’s
equation, and they are presented in the same form as partial differential diffusion
equations. The general form of the model is applicable to three-dimensional forma-
tion of a filter cake. Both compressible and incompressible cakes are considered.
A calculated example for incompressible cake filtration is presented.

INTRODUCTION

In cake filtration, solids are separated from liquid with a filter medium.
Liquid flows through the medium while solid particles are retained on the
surface of the medium, forming a cake. A cake is termed incompressible
when the porosity, i.e., void fraction of cake, and specific cake resistance
are constant throughout the cake (1). In a compressible cake, porosity
usually decreases toward the filter medium.

Many studies on the mathematical modeling of compressible cake filtra-
tion have been presented, e.g., Chase and Willis (2), Stamatakis and Chi
Tien (3), Tiller et al. (4), Wakeman (5), Smiles (6), and Shirato et al. (7).
The filtration of compressible fiber suspensions has also been studied with
the same basic principles, e.g., Ingmanson (8), Kovasin et al. (9), and
Nordén et al. (10).

Recently Stamatakis and Chi Tien (3) derived equations describing the
formation and growth of filter cakes. Their equations are based on the
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general discussion on filtration presented by Tiller et al. (4). Stamatakis
and Chi Tien (3) also presented a method for the numerical solution of
these equations. Only one-dimensional filtration cases are considered in
the study, and the compressible cake is assumed to be finite.

Smiles (6, 11) proposed an approach to filtration where the filtration
equations are presented in the form of differential diffusion equations.
This approach is applicable to one-dimensional cases. Smiles employs a
material coordinate based on the distribution of the solid in his approach,
and he uses the moisture ratio, i.e., the specific volume of water per
specific volume of solid, as the dependent variable. However, as pointed
out by Wakeman (5) and Tosun (12), the approach is conceptually difficult
and ignores accepted filtration terminology.

In this study on cake filtration, equations of continuity are based on
volume coordinates, and volume average velocity is used as average ve-
locity. The pressure loss of liquid in cake is described by Darcy’s law, and
liquid flow is assumed to be laminar. A force balance is used to correlate
compressive pressure with hydraulic pressure, and the consistency of sol-
ids is related to compressive pressure with a constitutive function. These
equations are combined, and an equation for cake filtration is presented.
This equation has the same form as the partial differential equation in
diffusion with a nonconstant volumetric diffusivity. The equations are
presented in three-dimensional form.

VOLUME BALANCES

In the literature, no systematic approach to volume balances has been
found apart from Nordén (13), although in some studies volume balances
have been used in some simple form, i.e., Renault and Wallender (14),
Core and Mulligan (15), and Rohani and Baldyga (16).

Volume balances may be derived from the corresponding mass balances
(13). The differential component and total mass balances are, respectively,

Dc;
= Dt+ch+VJ, §))
r Dt+pr+§IvJ, ()
where
D d
E a_t + w'V

The velocity w can be mass, molar, or volume-average velocity.
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The substitutions of Vien, Vigen, pv = 1, ¢i0;, and j; for r, ri, p, ci
and j, respectively, gives the differential component and total volume
balances (13).

oy _ D(c;v)
igen — Dt

+ (c0)V'w + V-(j:7;) 3)

I
Vien = Vow + 2 V-(j;T1) 4)
i=1
In this study, equations describing the three-dimensional two-phase flow

of slurry in filtration are derived from the preceding volume balances.
The total volume balance takes the form

Viw = Vow + V-G + JuB) ®
The solids volume balance is

. D c—s Crt i

sgen = (D:‘)) + (cvs)V-w + V:(jsvs) 6)

And a similar balance for filtrate or liquid is

_ D(crvr)

Vigen = — 5 + (ca@)V'w + V-(isvr) (7)

With the following assumptions:

no reactions or dissolving of solids occur.
partial specific volumes v and ¢ are constant.

Equations (6) and (7) reduce to the corresponding mass balances.
As there is no generation of mass in the system, it is seen from the
mass balances that

Vigen =0,  Vigen =0 ®)
and
Vien = Vigen + Vigen = 0 )
Assuming the velocity w to be the volume-average velocity, there fol-
lows for a binary system
Jor + jsUs = 0 (10
and the substitutions of Eqs. (10) and (9) into Eq. (5) gives
Vw=20 an
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As the partial specific volumes 7; are assumed to be constant, they can
be replaced by the corresponding specific volumes v;.

SUPERFICIAL VELOCITIES

Superficial velocities of slurry, solids, and liquid are defined as follows.
For the slurry, the superficial velocity is the same as the volume-average
velocity.

W=w=W, + W, (12)

Superficial velocities of solids and liquid are defined with a convective
flux term and a ‘‘diffusional flux’’ term, in the same way as total fluxes
are defined in diffusion. Hence, for solids one has

ws = (Cvs)w + jsvs (13)

where W is the superficial velocity of solids relative to stationary coordi-
nates, and jsvus is the ‘“diffusional velocity’’ of solids relative to volume
average velocity w.

One has, thus, for the liquid

We = (crupw + jrur (14)

VELOCITIES

The true velocities are given by the following equations. For the slurry,
one has

w=W (15)
For the solids, the velocity is
u = WJ/cus (16)
and for the liquid, the velocity in the interstices of the solids is
ur = We/csur a7

Wallis (17) has also presented the different velocities in two-phase flow
using volume-average velocity and a relative velocity.

DARCY’'S EQUATION FOR LAMINAR FLOW

The well-known Darcy equation for laminar flow can be written as

1 K
Uy — u = m"f_] fo’f (18)
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The pressure loss gradient Vpg is opposite in sign to the liquid pressure
gradient Vp¢ for horizontal flow. The pressure loss gradient Vp¢ ¢ should
be used in Eq. (18) and not the liquid pressure gradient Vpe, which is used
by Stamatakis and Chi Tien (3) and Tiller et al. (4).

The permeability K is not constant for a compressible bed, but varies
throughout the cake. It is usually presented as a function of consistency
of solids ¢ or compressible pressure ps.

With Eqgs. (16) and (17), Darcy’s equation takes the form

Wet+ W, W, W, 1K

Ceur B E‘E B C_Us - Cfvf—"f_l_ Vpes (19)
Using Eq. (12) in Eq. (19), -one has
w W, 1 K
- = —— Vpgs (20)

CgUf CfUrCUs CeUr M

And with Eq. (16) we obtain Darcy’s equation in the form
K
w—u= ;fo,f Q21

Now the ‘‘diffusional mass flux’’ of solids can be expressed with Eqs.
(13), (16), and (21):

Kc
Js=clu—w)= Y Vpie (22)

In the above discussion inertial forces are neglected and gravitational
forces are partly taken into account. Only the friction between particles
and liquid is considered. The internal forces in the liquid due to viscosity
are not considered, and wall friction is neglected.

CONSTITUTIVE EQUATION

The structural properties of a filter cake can be represented alternatively
with porosity €, solidosity €, or consistency ¢. These variables can be
related to each other.

Constitutive equations are used to correlate the structural bed proper-
ties with the compressive pressure acting on the solid particles. These
equations are empirical, and different equations have been proposed.

Tiller et al. (4) suggested the following constitutive equation which is
often utilized in the mathematical modeling of filtration:

B
Ps
s = €|l +—
€ € ( pA) (23)

Constants €2, pa, and B in Eq. (23) are material specific.
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According to Tiller et al. (4), this constitutive equation is generally valid
for compressive pressures up to 5—10 atm. It is clearly seen from Eq. (23)
that e, tends to infinity as p; — «. However, values of solidosity greater
than unity have no physical meaning.

In the filtration of pulp suspensions, consistency ¢ usually describes
the structure of fiber beds. Fiber consistency is normally defined as weight
of dry fibers per unit volume of suspension. The volume fraction of liquid,
porosity, can be calculated from the fiber specific volume and the fiber
consistency:

e =1— cus 24)

Qviller’s equation (18) is often used as a constitutive equation for fiber
beds. In this equation, fiber consistency is correlated to compressive pres-
sure with a power function.

¢ = MplY (25)

In the following discussion, a general form of the constitutive equation
is used

ps = G(c) (26)
PERMEABILITY

There are several correlations for the calculation of permeability. One of
the most frequently used is obtained from Darcy’s and Kozeny-Carman’s
equations.

(= ewy)?

K= aSeur 0

The Kozeny factor £ in Eq. (27) depends on particle size, shape, and
porosity. An average value of the Kozeny factor is 5 for roughly spherical
particles in the porosity range between 0.3 and 0.5 (18). However, this
average value is not applicable to beds formed of multisized particles.

For cellulose fibers the value of the Kozeny factor k is 5.55 for porosities
less than 0.80 (19). For fiber structures with higher porosities, both Davies
(20) and Carrol (21) proposed a correlation for the variation of Kozeny
factor with porosity. Davies’ correlation is applicable to porosities higher
than 0.60 and Carrol’s correlation for the whole porosity range. Carrol’s
correlation is of the form

k = 5.0 + e!14-0(crr—0.80)] (28)
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Tiller et al. (4) and Stamatakis and Chi Tien (3) correlated permeability
to the compressive pressure in their studies with the following empirical
equation:

K = L (29)

L3
(R
F N
In Eq. (29), K, is the permeability at zero compressive stress. The con-
stants Ko, pa, and 8 are material specific.

FORCE BALANCE

In a stationary bed, the total pressure at some arbitrary point is assumed
to be constituted of liquid pressure pr and compressive pressure on solids
Ds-

p=ps+ps (30)
—fr-L dr +
Ovslg Po

The pressure gradients are

Vp = Vps + Vpr = glog (3D
1 1

V. = cu, (;)—s _ ;f) . (32)

Vpe = gluvs (33)

The solid particles are assumed to lie on each other in the bed, and thus
they are not contributing to the liquid pressure due to height.

Liquid flow is usually laminar in a nonstationary bed, and therefore
inertial forces may be omitted. When wall friction is also neglected and
particles are assumed to be in point contact with each other, only frictional
forces between fluid and solid particles and gravitational forces need to
be considered.

Thus we obtain Eqs. (32) and (33) in the following form for flow in a
nonstationary bed:

1 1
Vps = cus <— - —) g + Vpor (34)

Vs Ur

Vpe = f — Vpes (35)
f
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As an approximation, the gradient of the total pressure in Eq. (31) is
assumed to be the same in the nonstationary bed as in a stationary bed
with the same distribution of solids.

From the assumptions we obtain the relationship Vpsr = Vpgy, and
therefore the liquid pressure loss gradient Vpgy is

1 1
Vpee = Vps — cus (— - —) g (36)

Us Ut

And when the last term in Eq. (36) is neglected, which is usually done in
filtration, the force balance is

Vper = Vps 37
DIFFUSION EQUATIONS
The equation of the ‘“diffusional mass flux’’ of solids Eq. (22) combined

with the constitutive equation Eq. (26) and the force balance Eq. (37)
gives

js = —D(c)V¢ (38)
where
_ Kc d(G(o)]
D(c) = n dc

Equation (38) is exactly the same equation as we have for diffusion mass
transfer with a nonconstant volumetric diffusivity [D(c) = () m?%s]. In
ordinary diffusion, this is called Fick’s law.

The diffusivity of solids D(c¢) may also be expressed in the following
form using Eq. (27) for permeability, Carrol’s correlation (Eq. 28) for the
Kozeny factor, and Qviller’s correlation (Eq. 25) for compressive
pressure:

(1 — Cvs):&c((l/N)-Z)

D(c) = NSINMVZ(5.0 + e #002—cuy

(39)

In Eq. (39), vs is the volume of wet fibers per unit weight of dry fibers
and the consistency c is the weight of dry fibers per unit volume.
Insertion of V¢, = 0 and Eqgs. (38) and (11) in Eq. (6) gives
D¢ oc
Dr = a1 + wVc = V:[D(¢)Vc] (40)
This is the usual partial differential equation for diffusion with no reactions
and no generation of volume.
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If the solids contain liquid, which follows the solids, then Egs. (31),
(34), (35), (37), (38), and (40) (but not Eq. 39) hold with the following
definitions:

€s volume fraction of wet solids

Us volume of wet solids per unit weight of wet solids

c consistency, i.e., weight of wet solids per unit volume
Js mass flux of wet solids

These equations also hold for €; and v as above and

¢ weight of dry solids per unit volume
Js mass flux of dry solids

INCOMPRESSIBLE FILTER CAKES

The consistency c is often assumed to be constant in incompressible
filter cakes, and then constitutive equations involving consistency cannot
be used. Therefore, with incompressible cakes, we start with Eq. (21),
the Darcy equation

nw — uw
\y = ——
pf,f K (41)
The boundary condition at the cake surface is obtained from the solids
mass balance

_dry  CcFu — colc

e @)

where wy, and ry, are boundary velocity and radius vector, respectively.
In Eq. (42), u. is the velocity of particles in the cake at the cake surface
and c. is the cake consistency.

EXAMPLE

Cake filtration with variable hydrostatic pressure and sedimentation of
solid particles is presented as an example. The filter cake is taken as
incompressible. The influence of sedimentation on the filtration of incom-
pressible filter cakes has also been studied by Theliander (22), Vadja and
Toros (23, 24), and Bockstal et al. (25).

The filtration process in our example is presented schematically in Fig.
1. Filtration starts with slurry of consistency cg, and the initial height of
the slurry above the filter cloth is 4. A constant gauge pressure of magni-
tude p, is applied to the top of the slurry. Therefore, at the start of the
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INITIAL INTERMEDIATE FINAL

filtrate filtrate

FIG. 1 The filtration process.

filtration the pressure difference across the filter cloth is the sum of the
gauge pressure and the hydrostatic pressure of the slurry.

At an intermediate time, the height of the cake is # and the combined
height of the cake and the slurry is As.. There is also a layer of clear liquid
above the slurry, which is formed from the settling of the solid particles.
The total height of solids and liquid above the filter cloth diminishes as
the filtrate flows out of the filter chamber. The pressure drop across the
cake and the filter cloth is the sum of the gauge pressure, the hydrostatic
pressure of the slurry, and the hydrostatic pressure of the liquid.

The filter medium resistance is assumed to be constant during the filtra-
tion. The filtration process stops when all the solid particles are in the
cake. This step is followed by the flow of the clear liquid through the
cake, which is not included in these calculations.

Solution

The velocity of the particles in the cake is zero, as the cake in this
example is incompressible. Therefore the solids mass balance for the one-
dimensional system simplifies to

dh CrU cr(w 4+ us
F = F ( t) ( 43)

—_Wy, = — =
° dt Cc — CF Cc — CF
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where u is the velocity of the particle in the slurry, and us is the hindered
settling velocity of the particles, i.e., the velocity difference between the
particles and the slurry.

The velocity of the sedimenting particles relative to the slurry is calcu-
lated in the same way as the hindered settling velocity is calculated in
sedimentation. The solid particles are assumed to be spherical and of equal
size. It is also assumed that the slurry concentration above the cake is
constant. Thus, the settling velocity is constant.

Khan and Richardson (26) present the following correlation for the cal-
culation of the terminal velocity u, which applies to Re, < 10°

_ Prduy

Re, = (2.33Ga%"'® — 1.53Ga0.016)133 (44)

In Eq. (44), Ga is the dimensionless Galileo number:

3 —
Ga = ¢ pf(pjrlz polg @5)

The hindered settling velocity us, is calculated from the terminal settling
velocity using the empirical equation

Ug = u — w = u(l — cpvs)” (46)

The exponent n in Eq. (46) is calculated from the correlation presented
by Khan and Richardson (27):

48 — n
n— 2.4

= 0.043Ga%>" (47)

We use Darcy’s equation to calculate the flow of filtrate:

A
w = ——PE (48)

h
(i + &)

where the pressure drop of fluid from friction expressed with the hydro-
static pressures is

Apes = pe + paglhse — h) + peg(he — hse + h) (49)

The pressure drop in Eq. (49) may often be approximated with the
equation

Apes = pg + paghy (50)
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FIG. 2 Comparison between filtration and filtration with sedimentation.

The thickness of the clear liquid above the slurry is a function of the
hindered settling velocity and of time:

he — hye = ugt (51)

The decrease of the total height in the filter chamber is proportional to
the flow of filtrate:

dhidt = —w 52

This system of five equations (Egs. 43, 48, 49, 51, and 52) is solved
with the method of finite differences. The results are shown in Figs. 2
and 3. In Fig. 2 we have compared the formation of the filter cake between

1
0.8 TOTAL
E \
~ 0.6
-
%) \w@; ano
o 04
el /CAKE
0.2
0 ! 4 — '
0 30 60 90 120
time /s

FIG. 3 Different heights in the filter chamber.
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cake filtration with sedimentation with filtration where the effects of sedi-
mentation have been neglected, and in Fig. 3 the different heights in the
filter chamber are shown as a function of time. The following data were
used in the calculations:

d = 150 pm
ce = 1902 kg/m?
cr = 634 kg/m?
De = S kPa

h. = 1 m(at t = 0 seconds)

K = 9.88 x 10712 m? (calculated from Eq. (27))
s = 1434 kg/m?

pe = 1000 kg/m?

0s = 3170 kg/m?

7 = 1.005 mPa-s

Rn,=2x10°m™!

CONCLUSIONS

Equations describing the formation of filter cakes in cake filtration have
been developed in this study. The general equations are applicable to
three-dimensional cases, and both compressible and incompressible cakes
are considered.

The filtration equations are derived to the same form as partial differen-
tial equations are in diffusion. This facilitates the solution of the differen-
tial equations as the mathematics of diffusion has been studied exten-
sively.

The calculation procedure for an incompressible cake is presented in
an example.

NOTATION
c consistency of solids (kg/m?)
Ce cake consistency (kg/m?)
C; consistency of component i (kg/m?)
CE initial and feed consistency (kg/m?)
d diameter of particle (m)
Ked
D(c) diffusivity of solids [= =< —[G—(C—)]} (m?/s)
M dc
g gravitation vector in downward direction (m/s?)
Ga dimensionless Galileo number

G(c) constitutive function (Pa)
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Po
Pa
Dt
Ds
Pe
fo,f
Vps.f
Apes
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diffusional mass flux of solids and liquid with respect to average
flow velocity w [kg/(m?®s)]

cake thickness (m)

total height of material in filter chamber (m)
thickness of cake and slurry in filter chamber (m)
Kozeny factor

permeability (m?)

permeability of unstressed bed (ps = 0) (m?)
compressibility constant (Eq. 25) [(kg/m?)/Pa”]
compressibility constant (Eq. 25)

empirical exponent in Eq. (47)

total pressure (Pa)

constant total reference level pressure (2 = 0) (Pa)
empirical constant (Pa)

liquid pressure (Pa)

solids compressive pressure (Pa)

gauge pressure (Pa)

liquid pressure loss gradient (Pa/m)

gradient of compressive solids stress due to friction (Pa/m)
pressure loss in liquid over cake and filter cloth (Pa)
rate of generation of mass per unit volume [kg/(m?s)]
radius vector (m)

boundary radius vector (m)

filter medium resistance (m™?!)

particle Reynolds number

specific surface (m*m?)

time (seconds)

velocity of solids (m/s)

velocity of solids in cake (m/s)

velocity of liquid (m/s)

hindered settling velocity of particles (m/s)

terminal settling velocity of particles (m/s)

volume generation in total volume balance [m?*/(m?s)]
volume generation in solids volume balance [m?/(m?s)]
volume generation in liquid volume balance [m3/(m?3s)]
specific volume (m?/kg)

specific volume of solids and liquid (m*/kg)

partial volume of solids and liquid (m3/kg)

average (usually volume) velocity (m/s)

boundary velocity at cake and slurry interface (m/s)
superficial velocity of slurry (m/s)

superficial velocity of solids (m/s)

superficial velocity of liquid (m/s)
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Greek Letters

B compressibility coefficient

] compressibility coefficient

€ porosity

€s solidosity

€ solidosity of unstressed bed (ps = 0)
M dynamic viscosity of liquid (Ns/m?)
p mass density (kg/m?)

Subscripts

c cake

f liquid

i component i

S solid

sl slurry
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